11
import math
from scipy import stats
# Given values
mu_0 = 200 # Old
recipe mean
x_bar = 190 # Sample
mean
s = 15 # Sample
standard deviation
n = 40
# Sample size
alpha = 0.05
# Calculate t-statistic
t_stat = (x_bar - mu_0) / (s / math.sqrt(n))
df = n - 1
# Get critical t-value for one-tailed test
t_critical = stats.t.ppf(alpha, df)
# Calculate p-value
p_value = stats.t.cdf(t_stat, df)
# Print results
print(f"T-statistic: {t_stat:.3f}")
print(f"Critical t-value: {t_critical:.3f}")
print(f"P-value: {p_value:.5f}")
if t_stat < t_critical:
print("Reject the null hypothesis: The new recipe has
significantly fewer calories.")
else:
print("Fail to reject the null hypothesis: Not enough
evidence to support the claim.")
Comments
Post a Comment